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Abstract
We construct a new class of non-Hermitian Hamiltonians with real spectra.
The Hamiltonians possess one explicitly known eigenfunction.

PACS numbers: 02.30.Tb, 03.65.Ge

1. Introduction

Recently, non-Hermitian Hamiltonians have attracted much attention. Such Hamiltonians are
used in optics [1, 2], in field theory [3] and in other branches of theoretical physics.

Among the non-Hermitian Hamiltonians, much attention has been devoted to the
investigation of properties of the so-calledPT symmetric Hamiltonians [4–13]. A Hamiltonian
is said to be PT symmetric if PT H = H PT , where P is the parity operator, i.e. Pf (x) =
f (−x), and T is the complex conjugation operator. The main reason for this interest was
an assumption that their spectra were entirely real as long as the PT symmetry was not
spontaneously broken.

There are several ways to build a non-Hermitian Hamiltonian with a real spectrum. For this
purpose, supersymmetric quantum mechanics has been used [14]. In the case of polynomial
complex potentials the use of some spectral equivalences has been proposed [15, 16].

Recently, Mostafazadeh has generalized PT symmetry by pseudo-Hermiticity [17]. The
idea of pseudo-Hermiticity was introduced by Pauli [18] (see also [19] and references therein).
A Hamiltonian H is said to be η-pseudo-Hermitian if

H + = ηHη−1 (1)

where + denotes the adjoint operation. In [17], a new class of non-Hermitian Hamiltonians
with real spectra has been proposed, which are obtained using pseudo-supersymmetry.

Mostafazadeh [20] has also shown that the operator H with a complete set of biorthonormal
eigenvectors has a real spectrum if and only if there exists a linear invertible operator O such
that H is η-pseudo-Hermitian, where η = O+O .
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In this paper we construct a new class of pseudo-Hermitian operators with real spectra
using O as a first-order differential operator.

2. Pseudo-Hermiticity

Let us suppose that a non-Hermitian Hamiltonian H is η-pseudo-Hermitian:

ηH = H +η. (2)

Here, we choose another form of pseudo-Hermiticity to avoid a necessity of η invertibility
(the form (2) is mentioned in [17]).

Let us choose an operator η to be a Hermitian operator. Then ηH is also a Hermitian
operator: (ηH)+ = H +η+ = H +η = ηH . Consider an eigenfunctionψ and the corresponding
eigenvalue E of H. Then, because of the Hermiticity of ηH as well as of η,∫

ψ∗ηHψ dx = E

∫
ψ∗ηψ dx (3)

both integrals are real and except for the case∫
ψ∗ηψ dx = 0 (4)

the eigenvalue E is also real. In contrast, if
∫
ψ∗ηψ dx = 0 then the left integral of (3) also

has to be zero. In this case, E can be either a real or a complex number.
For a general form of η it is difficult to find out if there exist such eigenfunctions which

satisfy (4). To simplify the study of the case of
∫
ψ∗ηψ dx = 0 we concretize the form of η

to be

η = O+O. (5)

For this case, the integral
∫
ψ∗O+Oψ dx = ∫ |Oψ|2 dx is greater than zero except for

the case of ψ belonging to the kernel of O. So we have to solve

Oφ = 0 (6)

and verify if solutions of this equation are the eigenfunctions of H.
In the following section we build such a pair of Schrödinger Hamiltonian

H = − d2

dx2
+ V (x) (7)

andO+O that satisfies the condition (2).

3. O as the first-order differential operator

We choose O in the following form:

O = d

dx
+ f (x) + ig(x) (8)

where f and g are regular, real-valued functions. Then

O+ = − d

dx
+ f (x)− ig(x). (9)

Substituting equations (7)–(9) into equation (2) and collecting terms with the d2

dx2 operator,
we obtain

ImV = −2g′. (10)
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The terms without differential operators lead to 4g′(f ′ + f 2) + 2g(f ′ + f 2)′ = g′′′.
Multiplying this equation by g and integrating it, we obtain

f 2 − f ′ = 2gg′′ − g′2 + α

4g2
(11)

where α is a real constant of integration.
The terms with d

dx give 2ReV ′ = 2(f 2 − f ′ − g2)′. Integrating it and substituting
equation (11), we can rewrite the real part of the potential as

ReV = f 2 − f ′ − g2 + β = 2gg′′ − g′2 + α

4g2
− g2 + β (12)

where β is a real constant of integration. In equations (10)–(12) g plays the role of a generating
function. In order to obtain a PT symmetric Hamiltonian, the generating function g must be
an even function, i.e. g(x) = g(−x).

It should be noted that the choice of O in the form of equation (8) leads to η =
− d2

dx2 − 2ig d
dx + f 2 − f ′ + g2 − ig′ and η plays the role of a second-order Darboux operator.

It intertwines H and H + which are superpartners of the second-order supersymmetry [21].
Formulae (10)–(12) are similar to the corresponding results of [22].

The next step is to check whether the solution of (6) is an eigenfunction of H. In terms of
f and g we can express this solution as

φ = e− ∫
(f +ig) dx . (13)

Consideringφ as an eigenfunction of equation (7) and using equations (10) and (12), we obtain

−i(g′ + 2fg) + β = E

where E = Er + iEi is the complex eigenvalue of H (Hφ = Eφ). We see that β = Er . Then

f = −Ei + g′

2g
. (14)

Now, from equations (14) and (11) we have two different relations between f and g.
To compare them, we substitute f from equation (14) into equation (11) and, after some
simplification, we obtain E2

i = α. So we can state that φ can be an eigenfunction of
equation (7) only if α � 0. Note that equation (14), for the case E2

i = α, is the solution of
equation (11).

So, by choosing any g and α < 0, we can be sure that the spectrum of the corresponding
Hamiltonian is entirely real, but we are not sure that it is not empty. By choosing a suitable g
for α = 0, one can construct the Hamiltonian with a real spectrum and this also possesses one
explicitly known eigenfunction. Choosing g and α > 0, we have to check if the corresponding
φ does not belong to L2 space to obtain a Hamiltonian with a real spectrum.

In the following section, we illustrate these results.

4. Examples

To construct Hamiltonians, we use formulae (10) and (12) to represent the imaginary and real
parts of the potential, as well as using equation (14) to express f . There are two ways to
obtain a regular expression for f . The first is to choose g without changing the sign and any
value ofEi or α. This is illustrated by example 1. The second way is to choose g as a function
with a simple zero. In this case, we have to fix the value of the Ei to avoid singularity. This
way is illustrated by examples 2 and 3.



5896 T V Fityo

Example 1

By choosing the generating function g as the even function

g = e−x2

we obtain the PT symmetric Hamiltonian

H = − d2

dx2
+ x2 +

α

4
e2x2 − e−2x2 − 4ix e−x2

+ β − 1 (15)

which possesses a real spectrum for α < 0. For α = 0 we know one eigenfunction ψE=β =
exp

(− x2

2 − i
∫

e−x2
dx

)
, and for α = E2

i > 0 the eigenfunction ψE=β+iEi = exp
(− x2

2 +
Ei
2

∫
ex

2
dx − i

∫
e−x2

dx
)

does not belong to L2 space. So we can state that the spectrum of
equation (15) is entirely real for any value of the α parameter.

Example 2

Let us choose the generating function g in the form

g = sinh(x).

Then, to obtain regular f = −Ei+cosh(x)
2 sinh(x) one must set Ei = −1 and then f = − 1

2 tanh 1
2x.

Then φ = cosh
(

1
2x

)
e−i cosh(x) does not belong to L2. So, the spectrum of

H = − d2

dx2
− 2i cosh(x)− sinh2(x)

is real.

Example 3

Let us choose the generating function g in the form

g = tanh(x).

Then, avoiding singularity, we set Ei = −1 and obtain

H = − d2

dx2
− 2i − 1

4

cosh2(x)
+ β − 3

4
(16)

with the eigenfunction ψE=β−i =
(

1√
cosh(x)

)
e−i ln(cosh(x)). The spectrum of this Hamiltonian

can be found using supersymmetric methods and it is easy to show that this eigenvalue is
unique.
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